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Abstract: We identify a regime of the AdS/CFT correspondence in which we can quan-

titatively match N = 4 super Yang-Mills (SYM) for small ’t Hooft coupling with weakly

coupled type IIB string theory on AdS5 ×S5. We approach this regime by taking the same

decoupling limit on both sides of the correspondence. On the gauge theory side only the

states in the SU(2) sector survive, and in the planar limit the Hamiltonian is given by the

XXX1/2 Heisenberg spin chain. On the string theory side we show that the decoupling

limit corresponds to a non-relativistic limit. In this limit some of the bosonic modes and all

of the fermionic modes of the string become infinitely heavy and decouple. We first take

the decoupling limit of the string sigma-model classically. This enables us to identify a

semi-classical regime with semi-classical string states even though we are in a regime corre-

sponding to small ’t Hooft coupling. We furthermore analyze the quantum corrections that

enter in taking the limit. From this we infer that gauge theory and string theory match,

both in terms of the action and the spectrum, for the leading part and the first correction

away from the semi-classical regime. Finally we consider the implications for the hitherto

unexplained matching of the one-loop contribution to the energy of certain gauge theory

and string theory states, and we explain how our results give a firm basis for the matching

of the Hagedorn temperature in hep-th/0608115.
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1. Introduction

The duality between gauge theory and string theory plays a major role in modern theoret-

ical physics. In terms of the AdS/CFT correspondence [1 – 3], it is responsible for progress

in understanding the non-perturbative behavior of both gauge theory and string theory.

It has also led to insights concerning phenomenologically viable gauge theories (see for

example the review [4]).

However, it is difficult to test the AdS/CFT correspondence directly, since the gauge

theory and string theory sides usually are not applicable in the same regime. Indeed, the

conventional wisdom is that one needs the ’t Hooft coupling λ = g2
YMN to be large, and

to be in the planar limit, in order to see strings in gauge theory, while perturbative gauge

theory calculations only are valid for λ ≪ 1. In [5 – 7] a proposal was put forward for a

particular regime of AdS/CFT in which both gauge theory and string theory are reliable,

and hence can be subject to a detailed match. The regime is

E − J ≪ λ≪ 1 , J ≫ 1 (1.1)
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On the gauge theory side, we are considering SU(N) N = 4 SYM on R× S3, and E is the

energy of a state measured in units of the three-sphere radius, while J = J1 +J2 is the sum

of two of the three Cartan generators Ji, i = 1, 2, 3, of the SU(4) R-symmmetry. On the

string theory side, we are considering type IIB string theory on AdS5 ×S5, E is the energy

of a string state while J = J1 + J2 is the sum of two of the three Cartan generators Ji,

i = 1, 2, 3, of the SO(6) symmetry of the five-sphere, all measured in units of the five-sphere

radius. Moreover, λ = g2
YMN is the ’t Hooft coupling of SU(N) N = 4 SYM, which on the

string theory side is mapped to R4/(α′)2,
√
α′ being the string length and R the radius of

AdS5 and S5.

The leading part of the dynamics in the regime (1.1) corresponds to the decoupled

theory that one obtains by taking the following decoupling limit [5 – 7]1

λ→ 0 , Ji, N fixed , H ≡ E − J

λ
fixed (1.2)

On the gauge theory side, we have in the planar limit N = ∞ that H is the Hamiltonian of

a ferromagnetic XXX1/2 Heisenberg spin chain with the single-trace operators interpreted

as states of the spin chain [9, 5]. An important ingredient in this is that only states in the

SU(2) sector can survive the limit. These are the states built only of the two scalars of

N = 4 SYM with J = 1. For all other states of N = 4 SYM it is easy to see that E − J

becomes at least of order one, thus H goes to infinity in the above limit (1.2).

For J ≫ 1 the Landau-Lifshitz sigma-model plus higher derivative terms gives an

effective long wave-length description of the Heisenberg spin chain [10]. Using this we

observe that we can find semi-classical states on the gauge theory side, i.e. gauge theory

states that have a large value for the sigma-model action when J is large.2 This could

seem surprising in that we are in weakly coupled gauge theory λ ≪ 1, i.e. it contradicts

the standard lore that one should only find semi-classical string states for λ ≫ 1. This

observation motivates us to show that the regime (1.1) can be a semi-classically valid regime

for strings on AdS5×S5 even though the effective string tension is small R2/α′ ≪ 1, which

normally would mean that we are deep into a quantum string regime.

On the string side the limit (1.2) can be written as

R2

α′
→ 0 , J fixed , H ≡ (α′)2

R4
(E − J) fixed , g̃s ≡ gs

(α′)2

R4
fixed (1.3)

This limit involves taking the effective string tension R2/α′ to zero, again suggesting that

we are deep into a quantum string regime. However, we find that when taking the limit (1.3)

on the sigma-model for AdS5 × S5 the action for the surviving string modes remains finite

and is moreover large when J is large. I.e. writing schematically the bosonic sigma-model

1This decoupling limit was originally conceived as a limit in the Grand Canonical ensemble in which you

are close to a critical point with zero temperature and critical chemical potential [5, 6]. A closely related

limit has been considered in [8] corresponding to putting an extra chemical potential in the decoupled

theory. In [7] limits giving other sectors than the SU(2) sector have been found.
2We find semi-classical string states when λ/(E − J) ∼ J with λ ≪ 1 and J ≫ 1, thus we are in the

regime (1.1).
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for AdS5 × S5 as

I = − R2

4πα′

∫

d2σGµν∂
αXµ∂αX

ν (1.4)

we find that the action remains finite in the limit (1.3) due to the fact that
∫

d2σGµν∂
αXµ∂αX

ν scales like Jα′/R2 in the limit (1.3), thus making J the effective

string tension in the regime (1.1). The regime (1.1) is therefore a new semi-classical regime

of type IIB string theory on AdS5 × S5. This is in agreement with the gauge theory side

where we also find semi-classical string states in the regime (1.1).

Taking the limit (1.3) on the level of the classical string theory sigma-model we end

up with the Landau-Lifshitz sigma-model. This resembles a similar limit of the classical

bosonic sigma-model on R× S3 considered by Kruczenski [11].3 We consider subsequently

the possible quantum corrections to the string theory sigma-model that can contribute

in the limit (1.3). One reason that our analysis holds is due to the exactness of the

supersymmetric string action on AdS5 × S5 [12 – 15]. Another important aspect is the

decoupling of six transverse bosonic fields, plus all the fermionic fields, which plays a

crucial role. We argue that these modes become infinitely heavy and thus decouple in the

limit (1.3) and through integrating them out they can only show up as higher-derivative

terms for the surviving modes. In addition, we argue that zero-mode quantum effects for

the decoupled modes are absent since we are close to E = J which corresponds to half-BPS

supersymmetric states.

By analyzing the classical sigma-model and the quantum effects, we conclude that

the limit (1.3) gives the Landau-Lifshitz sigma-model up to 1/J2 corrections where the

quantum effects can set in. The quantum effects enters as higher derivative terms coming

from integrating out the decoupled modes. We can therefore match the effective sigma-

model action for the strings, up to order 1/J2 corrections, to the sigma-model action

obtained on the gauge theory side by considering large J . This enables us furthermore to

show that not only we can match the leading order energy of semi-classical states but also

the energy of quantum string states, up to 1/J2 corrections.

It might seem like we have found a string/gauge-theory duality which is a weak-weak

duality. However, this is not the case. Instead, what we see on the gauge theory side is that

the effective coupling is not λ but rather λ/(E − J) when taking the limit (1.2). Thus, for

the gauge theory, (1.1) is really a strong coupling regime since λ/(E − J) ≫ 1. However,

differently from usual, we have complete control over this regime by only knowing the one-

loop contribution to the anomalous dimension of gauge theory operators.4 Moreover, the

3The way we take the limit (1.3) of the classical sigma-model on R × S3 resembles closely the limit

of Kruczenski [11]. However, the limit is not the same as the one considered by Kruczenski. The most

important difference is that we do not assume we are in the semi-classical regime R2/α′ ≫ 1 in our limit.

This is connected to the fact that we consider closely how the quantum effects come into play in our limit.

It is also important to remark that the way we take our limit of the sigma-model is completely determined

from the limit (1.2).
4As pointed out to us by Erik Verlinde, our limit has similarities with the ’t Hooft limit where N → ∞

with λ = g2
YMN fixed. Here g2

YM is sent to zero in the limit but λ ≫ 1 is still a strong coupling regime.

Moreover, in the ’t Hooft limit you access a simpler strong coupling regime than in the finite N theory

(since you only have planar diagrams) which is somewhat analogous to the situation in our limit where we

– 3 –
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identification of the one-loop dilatation operator as a spin chain is crucial for understanding

the spectrum of the gauge theory side in the regime (1.1). Therefore, in this sense it should

not be surprising that the regime (1.1) is under control in weakly coupled string theory, in

that it corresponds to a particular kind of strong coupling regime of the gauge theory side.

In previous work on matching gauge theory and string theory in the AdS/CFT corre-

spondence the starting point is that one should connect the weakly coupled gauge theory

regime λ≪ 1 with the semi-classical string theory regime λ ≫ 1. In particular, for gauge

theory and string theory states in the SU(2) sector one can on both sides of the AdS/CFT

correspondence make the expansion in λ′ = λ/J2 of the energy as follows

E − J = λ′E1 + λ′2E2 + · · · (1.5)

since J is large on both sides. In particular, it has been observed that at order λ′, i.e.

the one-loop contribution on the gauge theory side, you find the same energy from gauge

theory and string theory up to 1/J2 corrections [9, 16 – 21], even though you compute it in

two different regimes of the AdS/CFT correspondence. This matching of the energies begs

for an explanation. Using our results we are able to provide this explanation by giving

a simple argument for why one should obtain the same result for the λ′ contribution for

string theory in the regime λ≫ 1 as in the regime (1.1). This relies on our result that the

effective sigma-model for type IIB string theory on AdS5 ×S5 in the limit (1.3) is given by

the Landau-Lifshitz sigma-model up to 1/J2 corrections.

It is important to note that in the limit (1.2) we have λ′ = λ/J2 → 0 hence this

corresponds to taking a large volume limit with respect to the wrapping interactions for

the spin chain description of N = 4 SYM [22, 23], i.e. it is a limit in which wrapping

effects are suppressed and the phase factor in the S-matrix description of the asymptotic

Bethe equations for N = 4 SYM is trivial [24 – 26]. Thus, our results show that one can

match gauge theory and string theory in the AdS/CFT correspondence in this regime. This

is consistent with the fact that the conjectured Bethe equations for quantum strings [24]

become the Bethe equations for the Heisenberg sigma-model in the limit (1.2). Thus, the

results of this paper provide an argument for why this should be the case.

We discuss furthermore the physical interpretation of our decoupling limit (1.2). On

the string theory side, we show that the limit (1.3) (or equivalently (1.2)) in fact is a non-

relativistic limit for type IIB string theory on AdS5 × S5. I.e. it is a low energy limit and

a limit of slow velocities for the strings. Moreover, we show that the decoupling of certain

modes of the strings corresponds to going from a relativistic field theory, where we have

an anti-particle for each particle, to a Galilean field theory. This is furthermore connected

to the fact that we obtain a space-space non-commutative theory in the limit (1.3). We

explain that this is because the effective sigma-model should describe a one-dimensional

spin chain, hence the two spatial directions become the two directions in a phase space for

a single spatial direction.

We consider briefly the interplay between the decoupling limit (1.2) and the Penrose

limit of [27], which is a geometric limit of the AdS5 ×S5 background giving the maximally

have full control over the strong coupling regime.

– 4 –



J
H
E
P
0
2
(
2
0
0
9
)
0
2
7

supersymmetric pp-wave background of [28], in the coordinate system with a flat direc-

tion [29, 27]. We explain that we can consider the two limits in different successions and

that based on the results of this paper one finds the same limiting theory, which is a free

theory with Galilean symmetry, regardless of the succession of the limits.

Finally, we consider the implications of the results of this paper for the matching of

the Hagedorn temperature in [6] (see also [8]). We explain that the results of this paper

puts the matching of the Hagedorn temperature on a firm basis since they show that one

can match the leading order spectra of gauge theory and string theory in the limit (1.2) for

large J . We can conclude from this that the Hagedorn temperature is the first example of

a quantity not protected by supersymmetry that has been interpolated successfully from

the weakly coupled gauge theory to the semi-classical string theory regime.

2. Decoupling limit of planar N = 4 SYM on R × S3

In this section we review briefly the decoupling limit of N = 4 SYM on R × S3 [5 – 7]

giving a decoupled theory with an SU(2) symmetry.5 We consider it here in terms of the

charges and the energy/scaling dimension, i.e. in the microcanonical ensemble. We review

in particular that the decoupled theory in the planar limit corresponds to the ferromagnetic

Heisenberg XXX1/2 spin chain, and that one can take a continuum limit in which we can

approximate the Heisenberg spin chain by a sigma-model.

Note that we discuss in section 7 and in the conclusions in section 8 why λ/(E−J) ≫ 1

can be seen as a strong coupling regime.

2.1 Review of decoupling limit

We review here briefly the SU(2) decoupling limit of [5 – 7] on the gauge theory side of the

AdS/CFT correspondence. We are considering SU(N) N = 4 SYM on R × S3. Since we

take the large N limit below we introduce the ’t Hooft coupling λ = g2
YMN . We denote

the three R-charges for the SO(6) ≃ SU(4) R-symmetry as J1, J2, J3. We employ in the

following the state/operator correspondence relating a state of N = 4 SYM on R × S3 of

energy E to an operator of N = 4 SYM on R
4 of scaling dimension D = E, i.e. we set

the radius of the S3 to one. Due to the compactification on S3 the states are restricted

to be singlets of SU(N) which on the operator side restricts us to the class of operators

consisting of linear combinations of multi-trace operators.

The SU(2) decoupling limit of N = 4 SYM on R × S
3. We consider the following

decoupling limit of SU(N) N = 4 SYM on R × S3 [5 – 7]

λ→ 0 , Ji, N fixed , H ≡ E − J

λ
fixed (2.1)

with J ≡ J1 + J2 and λ = g2
YMN . Note in particular that J is fixed in the limit. In terms

of operators we have that H = (D−J)/λ. The scaling dimension is found by diagonalizing

5There are altogether 12 non-trivial decoupled theories [7]. These 12 theories correspond to twelve

different classes of limits of N = 4 SYM on R × S3. In the grand canonical ensemble they correspond to

being close to either of the twelve different critical points.
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the dilatation operator D [30, 16, 31]. At weak ’t Hooft coupling we expand D as

D = D0 + λD2 + λ
3

2D3 + λ2D4 + · · · (2.2)

Here D0 is the bare scaling dimension andD2 is the one-loop part of the dilatation operator

(see [32] for a complete expression). Taking now the limit (2.1) we see that since D0 − J is

a integer or half-integer we have that (D−J)/λ goes to infinity in the limit unless D0 = J .

Thus, all operators with D0 > J decouple in the limit. Note here that any operator in

N = 4 SYM obeys the bound D0 ≥ J . The class of operators saturating the bound, i.e.

that has D0 = J , corresponds to the so-called SU(2) sector of N = 4 SYM consisting of

all possible operators that one can make from linear combinations of multi-trace operators

built from the single-trace operators of the form

Tr(A1A2 · · ·AJ) , Ai ∈ {Z,X} (2.3)

Here Z and X are two of the three complex scalars of N = 4 SYM with R-charges

(J1, J2, J3) = (1, 0, 0) for Z and (J1, J2, J3) = (0, 1, 0) for X. Since J = J1 + J2 we

see that the total number of Z’s and X’s add up to J for any operator.6

For states in the SU(2) sector we see now that from H = (D−J)/λ we get an effective

Hamiltonian

H = D2 (2.4)

in the limit (2.1). This is a Hamiltonian in the sense that we get the energies/scaling

dimensions of the surviving states/operators by diagonalizing H. We have explicitly [33, 16]

H = − λ

8π2N
Tr[X,Z][X̄, Z̄] (2.5)

where X̄ = δ/δX and Z̄ = δ/δZ. This Hamiltonian gives the spectrum of our decoupled

theory.

Planar limit corresponds to ferromagnetic Heisenberg chain. Considering now

the planar limit N = ∞ we can employ large N factorization and get the scaling dimension

of any operator from knowing the scaling dimension of single-trace operators. Also, by the

same token the mixing between single-trace operators and multi-trace operators goes to

zero. Thus, we can get the whole spectrum by just focusing on the single-trace operators.

Considering now the single-trace operators in the SU(2), we have that a single-trace oper-

ator (2.3) can be interpreted as a state in a spin 1/2 spin chain [9] with the letters Z and

X being the spin up and spin down state.

In detail we choose the spin as Sz = (J1 − J2)/2 which means that Sz = 1/2 for Z

and Sz = −1/2 for X. Thus, for each site on the spin chain we have a two-dimensional

vector-space spanned by the spin-up and spin-down states. On this two-dimensional space

we can define the spin vector ~Si for site number i as 1
2~σ acting on the state of the i’th site,

where ~σ are the Pauli matrices. In this way we see that Sz = σz/2 which is consistent with

6Note that we keep all three R-charges fixed in the limit (2.1) thus we should take the limit with J3 = 0

since if J3 6= 0 we decouple all operators.
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the above definition of Sz. The Hamiltonian H, as defined by the limit (1.2), is then given

by

H =
1

4π2

J
∑

i=1

(

1

4
− ~Si · ~Si+1

)

(2.6)

This is the Hamiltonian for the ferromagnetic XXX1/2 Heisenberg spin chain with zero

magnetic field [9]. Here J is the length of the spin chain and Sz = (J1 − J2)/2 is the

total spin. Thus, in conclusion, this is the decoupled theory that one gets from taking the

decoupling limit (2.1) of planar N = 4 SYM on R × S3.

Since the ferromagnetic XXX1/2 Heisenberg spin chain is an integrable system we can

write down the following equations that in principle determines the full spectrum of H 7

H =
1

2π2

M
∑

i=1

sin2
(pi

2

)

(2.7)

eipkJ =

M
∏

j=1,j 6=k

S(pk, pj) , S(pk, pj) = −1 + ei(pk+pj) − 2eipk

1 + ei(pk+pj) − 2eipj
,

M
∑

i=1

pi = 0 (2.8)

These equations are the dispersion relation for H, the Bethe equations along with the S-

matrix, and a zero total momentum condition due to the cyclicity of the trace. We have

introduced here M momenta pi corresponding to M magnons which are pseudoparticles

propagating on the chain.

For J large, we can consider the low energy part of the spectrum H ≪ 1. This

corresponds to having the momenta of the magnons of order 1/J to leading order. One

then finds from (2.7)-(2.8) the following leading order low energy spectrum of H

H =
1

2J2

∑

n 6=0

(

1 +
2

J

)

n2Mn + O(1/J2) ,
∑

n 6=0

nMn = 0 (2.9)

where Mn is the number operator for the integer level n with n 6= 0. Note that this

spectrum is only true for states built from magnons with different momenta pi, i.e. it is

not true for bound states. We ignore this subtlety for simplicity of presentation.

We see from the spectrum (2.9) that for large J the Hamiltonian H goes like 1/J2 for

the low energy excitations. It is therefore natural in this regime to introduce the rescaled

Hamiltonian H̃

H̃ = J2H =
J2

λ
(E − J) =

J2

4π2

J
∑

i=1

(

1

4
− ~Si · ~Si+1

)

(2.10)

such that the spectrum (2.9) is

H̃ =
1

2

∑

n 6=0

(

1 +
2

J

)

n2Mn + O(1/J2) ,
∑

n 6=0

nMn = 0 (2.11)

7See [6] for a construction of the Bethe ansatz that takes into account that the total spin Sz = (J1−J2)/2

is fixed in our decoupled theory.
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We see that focusing on the low energy part of the spectrum of H in the large J limit

corresponds to considering the part of the spectrum of H̃ which is of order one.

Note that H̃ ∼ 1 means that λ/(E − J) ∼ J2. Thus, this falls within the regime (1.1).

Therefore we can conclude that we find quantum string states in planar N = 4 SYM on

R × S3 in the regime (1.1).

2.2 Effective sigma-model description in continuum limit

In this section we review that the ferromagnetic Heisenberg spin chain, that we obtain from

our decoupling limit (1.2) of planar N = 4 SYM on R×S3, has a sigma-model description

for large J [10]. We review this briefly in order to compare to what happens on the string

side in the decoupling limit (1.2) in section 3.

In the context of AdS/CFT, the sigma-model limit of the Heisenberg spin chain was

first used in [11]. We comment below, and also in the rest of this paper, in what sense our

approach is different from that of [11].

To obtain a sigma-model description of the Heisenberg spin chain, one begins by in-

troducing a coherent state |~n〉 for each site of the spin chain such that

〈~n|~σ|~n〉 = ~n (2.12)

where ~σ are the two by two Pauli matrices. Here ~n is a unit vector pointing to a point on

the two-sphere parameterized as

~n = (cos θ cosϕ, cos θ sinϕ, sin θ) (2.13)

One then proceeds to first write up the one-spin partition function, ignoring the interaction

between different spins. This can be done using the usual derivation of the path-integral

in quantum mechanics. One can then use this to write up the partition function for the

full spin chain, now including the interaction Hamiltonian (2.10). Altogether, this gives

the partition function and action [10]

Z =

∫

D~neiI[~n] , I[~n] =

J
∑

k=1

∫

dt̃

[

~C(~nk) · ∂t̃~nk − J2

32π2
(~nk+1 − ~nk)

2

]

(2.14)

where

~C(~n) · ∂t̃~n = −1

2

∫ 1

0
dξǫijkni∂ξnj∂t̃nk =

1

2
sin θ∂t̃ϕ (2.15)

is a Wess-Zumino type term where ~C(~n) is proportional to the area spanned between

the trajectory and the north pole of the two-sphere [10]. The action (2.14) provides an

equivalent description of the Heisenberg spin chain. Notice that this action is describing a

one-dimensional lattice of J spins, i.e. ~nk is the spin on the k’th site of the lattice.

It is important to note that in deriving the action (2.14) we have used a time t̃ corre-

sponding to H̃, i.e. H̃ = J2(E − J)/λ = i∂t̃. This is because we are interested in the low

energy dynamics for J large, hence the regime in which H̃ is of order one.

Taking now the limit J → ∞, we can approximate the one-dimensional lattice by a

continuous variable. Denoting this variable σ we are considering the field ~n(t̃, σ). Therefore,
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imposing that σ has period 2π, we should map the k’th site to σ = 2πk/J , i.e. ~nk(t̃) is

mapped to ~n(t̃, σ). Correspondingly we map the sum
∑J

k=1 to the integral J
2π

∫ 2π
0 dσ. We

furthermore use that

~nk+1 − ~nk = exp

(

2π

J
∂σ

)

~n− ~n (2.16)

This gives the action

I[~n] =
J

2π

∫

dt̃

∫ 2π

0
dσ

[

~C(~n) · ∂t̃~n+
J2

8π2
~n · sinh2

(π

J
∂σ

)

~n

]

(2.17)

We see that this can be considered to be a sigma-model on a continuous world-sheet

parameterized by t̃ and σ, with the target space given by S2 ≃ SU(2)/U(1). The first

term in (2.17) is a kinetic term, while the second one is a potential term. The second term

is responsible for the dispersion relation (2.7). This can be seen from the fact that the

momenta p of an impurity is mapped to −i(2π/J)∂σ . We see that the discreteness of the

Heisenberg spin chain manifests itself as a infinite sum over higher derivative terms in the

continuum action (2.17).

Expanding now the action (2.17) in powers of 1/J we have

I[~n] =
J

2π

∫

dt̃

∫ 2π

0
dσ

[

~C(~n) · ~̇n− 1

8
(~n′)2 +

π2

24J2
(~n′′)2 + O(J−4)

]

(2.18)

where we introduced a dot (prime) as the derivative with respect to t̃ (σ). The leading

part of the action (2.17) in the thermodynamic limit J → ∞ is therefore

I[θ, ϕ] ≃ ILL[θ, ϕ] ≡ J

4π

∫

dt̃

∫ 2π

0
dσ

[

sin θϕ̇− 1

4

[

(θ′)2 + cos2 θ(ϕ′)2
]

]

(2.19)

here written in terms of the parametrization (2.13). We see that to leading order in the

thermodynamic limit the Heisenberg spin chain is well-described by the Landau-Lifshitz

model with action ILL[θ, ϕ].

Finally, we note that the constraint of zero total momentum
∑M

i=1 pi = 0 in (2.8) takes

the following form for the sigma-model
∫ 2π
0 dσ sin θϕ′ = 0 in terms of the parametriza-

tion (2.13).

Getting the spectrum from the sigma-model. We now explain briefly how to get the

spectrum (2.11) from the sigma-model. We begin by considering a limit of the action (2.17),

here dubbed the free limit, in which the sigma-model reduces to a free theory with Galilean

symmetry. The free limit is a large J limit in which we zoom in to a point on the equator

of the two-sphere. More specifically, it is a limit in which we zoom in near the point

(θ, ϕ) = (0, 0) such that the two-sphere metric dΩ2
2 ≃ dθ2 + dϕ2, which means that the

geometry near this point is 2D Euclidean space. We take the free limit by defining the

rescaled coordinates

x =
√
Jϕ , y =

√
Jθ (2.20)

which we keep fixed as J → ∞. Taking now the J → ∞ limit of the action (2.19) we get

the following action

I =
1

4π

∫

dt̃

∫ 2π

0
dσ

[

yẋ− (x′)2 + (y′)2

4

]

(2.21)
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This action can easily be quantized. Define z = x + iy. Then we can write the EOMs as

ż = i
2z

′′. Using the EOMs plus the periodicity of σ we see that the general expansion of

z(t̃, σ) is

z(t̃, σ) = 2
∑

n∈Z

ane
−i n2

2
t̃+inσ (2.22)

To quantize the theory, we note that from the action (2.21) we have that the conjugate

momentum to x is px = y/(4π). The canonical commutation relation is

[x(t̃, σ), px(t̃, σ′)] = iδ(σ − σ′) (2.23)

Using this with (2.22) we see that the an’s becomes lowering operators with the canonical

commutation relation

[an, a
†
k] = δnk (2.24)

We see from this that z(t̃, σ) only contains lowering operators. This means that we do not

have an anti-particle part of z(t̃, σ). This fits with the fact that we have a non-relativistic

dispersion relation H ∝ p2
σ suggesting that we do not have an antiparticle propagating

backwards in time like in relativistic field theory.8 We remark furthermore that since we

have that y = 4πpx the two transverse dimensions that we started with have become

the two-dimensional phase space for the one dimension x. Thus we see a reduction from

two space-like dimensions to just one space-like dimension. This is connected to the non-

relativistic nature of the action (2.21) since normally two spatial directions in a sigma-model

would give rise the double number of raising and lowering operators as we found above.

We consider further the non-relativistic nature of the Heisenberg model in section 5.

From the action (2.21) we see that the Hamiltonian is

H̃ =

∫ 2π

0
dσ

[

(x′)2

16π
+ π(p′x)2

]

(2.25)

Inserting now (2.22) in this, we get the spectrum

H̃ =
1

2

∑

n∈Z

n2Mn ,
∑

n∈Z

nMn = 0 (2.26)

with the number operator being Mn = a†nan. This spectrum matches the leading order

part of the spectrum (2.11). The second equation is the level-matching condition derived

by imposing the vanishing of the total world-sheet momentum.9

One can also find easily the 1/J correction to the leading spectrum (2.11) from the

sigma-model (see for example [35]). We begin using the coordinate x as defined in (2.20).

The conjugate momentum px for the full action (3.23) is

px =

√
J

4π
sin θ (2.27)

8The non-relativistic nature of the Landau-Lifshitz sigma-model is also considered in [34].
9This is derived from

R

2π

0
dσyx′ = 0.
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Inserting this in the action (3.23), we can easily derive the Hamiltonian

H̃ =

∫ 2π

0
dσ

[(

1 − 16π2

J
p2

x

)

(x′)2

16π
+

(

1 +
16π2

J
p2

x

)

π(p′x)2 + O(J−2)

]

(2.28)

To find the 1/J corrections one can use ordinary quantum mechanical perturbation theory

and plug in the zeroth order x and px, as found from (2.22), into the Hamiltonian (2.28).

Doing this, one obtains precisely the corrected spectrum (2.11).10

Semi-classical states in decoupled theory. The spectrum (2.11) which has H̃ of order

one, corresponds to considering a finite number of impurities for the Bethe equations (2.7)-

(2.8). If we instead consider a number of impurities M such that M/J is of order one,

we get that the energy H̃ of such states is of order J . Such states are semi-classical since

when considering large quantum numbers we can approximate the quantum physics with

classical physics.

From the sigma-model point of view we have a natural classical description of states

with M/J of order one. These are the classical solutions of the Landau-Lifshitz sigma-

model (2.19). It is clear that any finite size solution of the sigma-model (2.19), i.e. solutions

that extend out in a finite area on the two-sphere, will correspond to an energy H̃ of order

J since the action (2.19) is proportional to J . Therefore we see that we can find semi-

classical solutions of the sigma-model in the decoupled theory. Note also that it is clear

from (2.19) that a finite-size solution on the two-sphere can be well-described classically

since the action (2.19) will be large when J is large.

In conclusion we have that semi-classical string states appears for H̃ ∼ J , i.e. for

λ/(E − J) ∼ J . Therefore, we find semi-classical string states in planar N = 4 SYM on

R × S3 in the regime (1.1).

3. Decoupling limit of strings on AdS5 × S5

In this section we implement the decoupling limit (1.2) on type IIB string theory on AdS5×
S5. This is accomplished by first considering the limit on a purely classical level. In this

way we obtain the Landau-Lifshitz model as the limiting sigma-model. Subsequently we

consider the quantum effects for the decoupling limit. We show that the transverse modes

decouple and we argue why the quantum effects are under control in our limit (1.2) even

though one naively seems to enter a quantum string regime. Finally we argue that this

means that we can match the leading spectra (2.11) of gauge and string theory by taking

the limit (1.2) on both sides of the AdS/CFT correspondence. This furthermore includes

the semi-classical states for which the action is large on both the gauge theory and the

string theory sides.

3.1 Classical limit of AdS5 × S5 sigma-model

In the following we take the limit (1.2) of the classical sigma-model for AdS5 × S5. The

quantum effects are considered in section 3.2.

10Note again that the spectrum (2.11) only describes non-bound-states, i.e. states build from raising

operators with different levels. The leading part of the spectrum (2.26) is instead true for all states.
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Note that the classical limit of the sigma-model considered in the following closely

resembles the limit of Kruczenski in [11]. However, even though these limits resemble each

other on the level of the classical sigma-model, they are different for the quantum string

theory since Kruczenski takes J → ∞ keeping λ/J2 fixed whereas we take λ → 0 keeping

J fixed.

We are considering type IIB string theory on the AdS5 × S5 background with metric

ds2 = R2
[

− cosh2 ρ dt2 + dρ2 + sinh2 ρ (dΩ′
3)

2 + dζ2 + sin2 ζ dα2 + cos2 ζ (dΩ3)
2
]

(3.1)

and the five-form Ramond-Ramond field strength

F(5) = 2R4
[

cosh ρ sinh3 ρ dt dρ dΩ′
3 + sin ζ cos3 ζ dζ dα dΩ3

]

(3.2)

We use in the following that

R4 = λ(α′)2 (3.3)

This relates the string parameters R and α′ to the ’t Hooft coupling λ of N = 4 SYM.

Using this the limit (1.2) can be formulated in string theory variables as (1.3). However,

we choose below instead to use the variables of the gauge theory.

We parameterize the three-sphere Ω3 as

(dΩ3)
2 = dψ2 + cos2 ψdφ2

1 + sin2 ψdφ2
2 = dψ2 + dφ2

− + dφ2
+ + 2cos(2ψ)dφ−dφ+ (3.4)

where 2φ± = φ1 ± φ2. The energy E and the SO(6) Cartan generators Ji, i = 1, 2, 3, are

given by

E = i∂t , J ≡ J1 + J2 = −i∂φ+
, Sz ≡ J1 − J2

2
= − i

2
∂φ−

, J3 = −i∂α (3.5)

In the limit (1.2) we only consider the charges E, J1 and J2. Together with the fact that

on the gauge theory side we decouple everything but the SU(2) sector in the limit (1.2) it

seems evident that we can work in the region ρ = ζ = 0 of the AdS5×S5 background (3.1)-

(3.2). In this region the background is simply given by the metric ds2 = R2[−dt2 +(dΩ3)
2].

Thus, we take the bosonic sigma-model for R × S3 to be the starting point below. This

is obviously only valid classically since we can have quantum fluctions in the directions

transverse to ρ = ζ = 0 (along with fermionic fluctuations). We deal with these issues in

section 3.2.

We take now as starting point the R × S3 background ds2 = R2[−dt2 + (dΩ3)
2] with

(dΩ3)
2 given by (3.4). Define

θ ≡ 2ψ − π

2
, ϕ ≡ 2φ− (3.6)

then we have the metric

ds2 = R2

[

−dt2 +
1

4
(dΩ2)

2 +

(

dφ+ +
1

2
sin θdϕ

)2
]

(3.7)

– 12 –



J
H
E
P
0
2
(
2
0
0
9
)
0
2
7

with the two-sphere metric given as

(dΩ2)
2 = dθ2 + cos2 θdϕ2 (3.8)

To approach the right energy scale, we make the coordinate transformation

t̃ =
λ

J2
t , χ = φ+ − t (3.9)

This ensures that H̃ ≡ (E − J)J2/λ = i∂t̃ which precisely corresponds to the energy that

we found was relevant in the sigma-model description on the gauge theory side (2.10).

Moreover, we have that J = −i∂χ and Sz = −i∂ϕ. With this the metric (3.7) is

ds2 =
√
λα′

[

J2

λ
dt̃

(

2dχ+ sin θdϕ
)

+
1

4
(dΩ2)

2 +

(

dχ+
1

2
sin θdϕ

)2
]

(3.10)

Consider now the sigma-model Lagrangian

L = −1

2
Gµνh

αβ∂αx
µ∂βx

ν (3.11)

We pick the gauge

t̃ = κτ , pχ = const. , hαβ = ηαβ (3.12)

with pχ ≡ ∂L/∂∂τχ. Employing this, the Lagrangian (3.11) is found to be

L =

√
λα′

2

[

κ
J2

λ

(

2∂τχ+ sin θ∂τϕ
)

+
1

4

(

(∂τθ)
2 + cos2 θ(∂τϕ)2 − (θ′)2 − cos2 θ(ϕ′)2

)

+
(

∂τχ+
1

2
sin θ∂τϕ

)2
−

(

χ′ +
1

2
sin θϕ′

)2
]

(3.13)

The Virasoro constraints are Gµν∂τx
µ∂σx

ν = 0 and Gµν(∂τx
µ∂τx

ν +∂σx
µ∂σx

ν) = 0, giving

0 =
√
λα′

[

κ
J2

λ

(

χ′ +
1

2
sin θϕ′

)

+
1

4

(

∂τθθ
′ + cos θ∂τϕϕ

′
)

+
(

∂τχ+
1

2
sin θ∂τϕ

)(

χ′ +
1

2
sin θϕ′

)

]

(3.14)

0 = κ
J2

λ

(

2∂τχ+ sin θ∂τϕ
)

+
1

4

(

(∂τθ)
2 + cos2 θ(∂τϕ)2 + (θ′)2 + cos2 θ(ϕ′)2

)

+
(

∂τχ+
1

2
sin θ∂τϕ

)2
+

(

χ′ +
1

2
sin θϕ′

)2
(3.15)

We record that

pχ ≡ 1

2πα′

∂L
∂∂τχ

=
κ

2π

J2

√
λ

+

√
λ

2π

(

∂τχ+
1

2
sin θ∂τφ

)

(3.16)

Note that the last term on the right-hand side goes away in the λ→ 0 limit which means

that the result for pχ is consistent with the above gauge choice (3.12). From this we see

furthermore that

J =

∫ 2π

0
dσpχ = κ

J2

√
λ

(3.17)
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This means that we have

κ =

√
λ

J
(3.18)

We take now the λ→ 0 limit of the Lagrangian and the constraints. For the Lagrangian

we get

1

κ
L =

α′J

2

[

(

2χ̇+ sin θϕ̇
)

− 1

4

(

(θ′)2 + cos2 θ(ϕ′)2
)

−
(

χ′ +
1

2
sin θϕ′

)2
]

(3.19)

where we defined the dot as a derivative with respect to t̃. For the constraints we get

χ′ = −1

2
sin θϕ′ , χ̇ = −1

2
sin θϕ̇− 1

8

(

(θ′)2 + cos2 θ(ϕ′)2
)

(3.20)

We can now eliminate χ from the Lagrangian. Using the first constraint we see that we

only have a χ̇ term in the Lagrangian without coupling to the other fields. Because of this,

we can ignore it in the Lagrangian, since omitting this term do not affect the EOMs for

the other fields. We can thus write the gauge fixed Lagrangian

1

κ
Lgf =

α′J

2

[

sin θϕ̇− 1

4

(

(θ′)2 + cos2 θ(ϕ′)2
)

]

(3.21)

This is then supplemented with the two constraints (3.20) that determine χ from the other

fields. Writing the action for the gauge-fixed Lagrangian Lgf as

I =
1

2πα′

∫

dτ

∫ 2π

0
dσLgf =

1

2πα′

∫

dt̃

∫ 2π

0
dσ

1

κ
Lgf (3.22)

we see that the action of the resulting effective sigma-model after the λ→ 0 limit is

I =
J

4π

∫

dt̃

∫ 2π

0
dσ

[

sin θϕ̇− 1

4

(

(θ′)2 + cos2 θ(ϕ′)2
)

]

(3.23)

From the first constraint in (3.20) we see that the action (3.23) should be supplemented

by the condition that the total world-sheet momentum is zero
∫ 2π

0
dσ sin θϕ′ = 0 (3.24)

We see that (3.23) precisely corresponds to the leading order part (2.19) of the sigma-model

action (2.17) derived on the gauge theory side. Thus, also on the string theory side we

regain the Landau-Lifshitz model. This is encouraging since we are getting the same action

on the gauge theory and string theory sides of AdS/CFT by taking the same limit on both

sides of the correspondence. However on the string side our limit is taken, so far, purely

classically. This is, as we discuss below, also the reason why we get the Landau-Lifshitz

model exactly in (3.23) whereas on the gauge theory side the leading order action (2.17) is

only an approximation. This point will be resolved in section 3.2.

It is important to note that if we consider solutions of the sigma-model (3.23) which are

of finite-size on the two-sphere then the action (3.23) is large when J is large. Therefore,

already at this point we see that we can safely match semi-classical states on the string

theory side to semi-classical states on the gauge theory side when J is large. We comment

further on this below.
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3.2 Taking into account quantum effects

In section 3.1 we took the decoupling limit (1.2) of type IIB string theory on AdS5 × S5

on the level of the classical sigma-model. In the following we consider the quantum effects

to see how the limit (1.2) works in the quantized string theory.

In section 3.1 we saw that taking the limit (1.2) classically gives the Landau-Lifshitz

sigma-model (3.23) without assuming J large. As noted above, this is a problem since

on the gauge theory side the Landau-Lifshitz sigma-model is only valid for large J (2.19).

This problem will be resolved in the following by taking into account the quantum effects.

In the AdS/CFT correspondence we have that planar N = 4 SYM on R × S3 is

dual to tree-level string theory on the AdS5 × S5 background (3.1)-(3.2). Tree-level string

theory means that we are considering first-quantized strings on AdS5 × S5. We can write

schematically the full partition function for first-quantized type IIB strings on the AdS5×S5

background (3.1)-(3.2) as

Z =

∫

[Dh][Dx][DS]eiI[h,x,S] (3.25)

where h is the world-sheet metric, x the bosonic fields and S the fermionic fields. We have

from the background (3.1)-(3.2) that the action I[h, x, S] is proportional to R2/α′ =
√
λ,

assuming we keep fixed the fields and the world-sheet metric. Therefore, it is customary

to regard
√
λ as an effective string tension on the AdS5 × S5 background.

Now, in the decoupling limit (1.2) we take λ→ 0 as part of the limit. It therefore looks

like we enter deep into the quantum string regime, since naively it seems that I[h, x, S] → 0.

However, this is not the case. As can be seen from the classical limit in section 3.1, the

modes with energies E−J of order λ in the limit (1.2) give a finite contribution to I(h, x, S).

This can be seen from the fact that the modes for which the limiting action (3.23) is finite

also give a finite value to the full action I(h, x, S) in the λ → 0 limit. Thus, for these

modes we can hope to have the quantum effects under control even though λ → 0. We

should be careful however because even though some modes give a finite contribution to

I(h, x, S) there can be significant changes to the action due to quantum effects.

Corrections to sigma-model action. One possible source of change of the action is

that in general the target space background of a sigma-model receives α′ corrections when

imposing conformal invariance of the sigma-model. If such corrections occur they could

significantly change how the sigma-model looks since, effectively speaking, we are taking

α′ → ∞. However, the AdS5 × S5 background is known to be an exact background due to

the large amount of supersymmetry [12], thus we can trust the sigma-model in our limit.

In fact, in [13 – 15] exact gauge-fixed Lagrangians for the Green-Schwarz superstring on the

AdS5 × S5 background are found.

Decoupling of transverse modes. Another possible source of change of the action,

which is more difficult to address, are the modes that do not give a finite contribution

to I(h, x, S). One set of such modes is the bosonic modes that correspond to fluctations

transverse to ρ = ζ = 0. To understand these modes we rewrite the full metric (3.1) for
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AdS5 × S5 as

ds2 = cos2 ζ R2[−dt2 + (dΩ3)
2] −R2(sinh2 ρ+ sin2 ζ)dt2 +R2Aijdx

idxj (3.26)

where xi are the remaining directions (ρ, ζ, α and Ω′
3) and R2Aij is the metric for these

directions. We see from this that setting ρ = ζ = 0 in (3.26) we end up with the metric on

R × S3 which is the starting point of our classical analysis in section 3.1.

Using now (3.26), we can write the full bosonic sigma-model Lagrangian for AdS5×S5

as

1

κ
Lfull = cos2 ζ

1

κ
L +

√
λ

2J
Aij ẋ

iẋj − J

2
√
λ
Aijx

′ix′
j − α′J3

2λ
(sinh2 ρ+ sin2 ζ) (3.27)

We see that the term without derivatives in this Lagrangian corresponds to the potential

term
J3

4πλ
(sinh2 ρ+ sin2 ζ) (3.28)

This is a confining potential. For λ → 0 any mode with ρ > 0 or ζ > 0 will be driven

towards the origin ρ = ζ = 0 by the confining potential. I.e. if we excite a mode so that

ρ > 0 or ζ > 0 then the energy of such a mode would be proportional to 1/λ which means

that for λ → 0 it would cost an infinite amount of energy to make such an excitation.

Therefore we get that only modes with ρ = ζ = 0 survive the limit (1.2).

Notice that the decoupling of modes transverse to ρ = ζ = 0 is the string equivalent of

the decoupling of the modes not in the SU(2) sector on the gauge theory side (see section 2).

It is for instance evident that a mode with J3 non-zero would get an infinite potential (3.28)

of order 1/λ just as having a gauge theory state with non-zero J3 also would be of order

1/λ.

It would be interesting to add fermions to the Lagrangian (3.27). This can be done

using the approaches of Metsaev and Tseytlin [13, 14] or Frolov et al [15]. We expect that

one can show the decoupling of the fermions in a similar way as the above argument for

the bosonic directions.

Quantum effects from transverse modes and fermions. As shown above all the

modes which do not give a finite contribution have a confining potential which freezes them

and confines them to a point in the λ→ 0 limit. However, they can still contribute through

quantum corrections, as we now discuss.

One possible source of quantum corrections is from the zero-modes of the transverse

modes and the fermions. We have shown above that near the point where the decoupled

modes should be confined to, the modes have a harmonic oscillator potential. Hence, the

zero point energy could contribute. However, here we are saved by the fact that we are

close to a supersymmetric BPS state. We are considering states with energies slightly

above E = J , and E = J is a half BPS state. Therefore, the zero-point energy is cancelled

out by supersymmetry.

There is another possible source of quantum corrections. Since the transverse modes

and the fermions become arbitrarily heavy in the decoupling limit (1.2) we can integrate out
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these modes and obtain an effective sigma-model action for the surviving modes. Classically

we have shown that we obtain the effective action (3.23) for the surviving modes. However,

when taking quantum effects into account, in integrating out the transverse modes and

fermions, the action (3.23) can receive corrections. This is possible because the decoupled

modes can contribute when we go off-shell. We now consider how such corrections to the

action (3.23) should appear.

We first remark that for J large the states which have finite size on the two-sphere pa-

rameterized by θ and ϕ have a large value for the action I(h, x, S) as we can see from (3.23).

Therefore, such string states are semi-classical and the quantum corrections are suppressed.

This means that in the full effective action obtained by integrating out the decoupled modes

the part proportional to J should be given by (3.23). From this we can conclude that we

have matched gauge theory and string theory, on the level of the sigma-model model ac-

tions, for the part of the sigma-model action which is proportional to J . This is one of the

main results of this paper. It means that we can reliably match semi-classical states with

large J found from weakly coupled gauge theory in the limit (1.2) to semi-classical states

found on the string side in the same limit (1.2).

To go on, we should consider terms in the effective sigma-model action which go

like powers of 1/J , as compared to the leading part (3.23). That 1/J is the effective

expansion parameter is clear from the fact that 1/J is seen to be the effective α′ in the

leading action (3.23). Moreover, one can show by considering string states on the pp-

wave background considered in [27] that the next correction arises as a 1/J correction

and the higher corrections furthermore come in powers 1/Jn [36]. This is done by an

analysis similar to the one of Callan et al [17, 18]. It is also clear from this analysis

that no off-shell contribution from the decoupled modes can enter at order 1/J . This is

basically because computing the corrections to the surviving string states takes the form

of quantum mechanical perturbation theory, with 1/J being the perturbation parameter.

Since in quantum mechanical perturbation theory it is only at the second order that one

can receive contributions from off-diagonal elements of the perturbation we can infer that

it is only at order 1/J2 that we get off-shell contributions from the decoupled modes. From

these considerations we can conclude that the first correction to the action (3.23) is of order

1/J2. We can write this as

I =
J

4π

∫

dt̃

∫ 2π

0
dσ

[

sin θϕ̇− 1

4

(

(θ′)2 + cos2 θ(ϕ′)2
)

+
G[θ, ϕ]

J2
+ O(J−3)

]

(3.29)

where G[θ, ϕ] is a function of θ, ϕ and their derivatives. We see from this that we can match

gauge theory and string theory, on the level of the sigma-model action, for the part of the

sigma-model action which is proportional to J plus the part proportional to J · 1/J = 1.

Instead at order J · 1/J2 = 1/J the decoupled modes can give new contributions to the

effective action, as parametrized by G[θ, ϕ] in (3.29).

Comparing to the sigma-model action (2.17) derived on the gauge theory side from the

ferromagnetic Heisenberg spin chain we can now conjecture how the full effective action for

the surviving modes should look. At order J1−2n we get a contribution with 2n derivatives

with respect to σ such that the full effective action matches the action (2.17) on the gauge
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theory side. That integrating out the decoupled modes gives rise to higher-derivative terms

is natural. It is interesting to note that each new derivative ∂σ comes with a 1/J . This could

seem surprising since in (3.23) 1/J plays the role of α′. However, in the free limit (2.20) of

the sigma-model it is not hard to check that the density of the world-sheet momentum goes

like 1/J which means that the operator for the world-sheet momentum is proportional to

−(i/J)∂σ .

In conclusion we have found that to order J · 1/J2 = 1/J the sigma-model (3.23) is

an accurate description for the surviving modes of type IIB string theory on AdS5 × S5 in

the decoupling limit (1.2). This leading part of the sigma-model action (see also (3.29))

matches the leading part of the sigma-model action (2.19) on the gauge theory side, thus

giving agreement between string theory and gauge theory in the decoupling limit (1.2) on

both sides of the AdS/CFT correspondence, for the leading and first subleading order in an

expansion in 1/J . Furthermore, we conjecture that the decoupled modes can be integrated

out on the string theory side to obtain the full sigma-model action (2.17) that is found on

the gauge theory side as an effective action for the surviving string modes.

Below in section 3.3 and further in section 4 we examine the consequences of the above

results for the matching of the spectra of gauge theory and string theory in the AdS/CFT

correspondence.

3.3 Matching of gauge and string theory spectra

In the above we have found that we can match gauge theory and string theory in terms of

a sigma-model description in the decoupling limit (1.2) of the AdS/CFT correspondence

for J large. We now employ this to match the spectra for gauge theory and string theory

in the limit (1.2).

First-quantized string states. On the gauge theory side, we have that the low energy

spectrum of H̃ for large J is given by (2.11). We now argue that we can find the same

spectrum on the string side in the same regime. Consider the sigma-model action (3.29). As

for the sigma-model on the gauge theory side we zoom in near the point (θ, ϕ) = (0, 0) on

the two-sphere by taking the large J limit with θ and ϕ given by (see eqs. (2.20) and (2.27))

x =
√
Jϕ , px =

√
J

4π
sin θ (3.30)

This gives the Hamiltonian (2.28) that we obtained on the gauge theory side, valid up to

1/J2 corrections. Note here that H̃ = i∂t̃ as defined above in section 3.1. Therefore, using

the same procedure as in section 2.2 we obtain again the spectrum (2.11). This means

that up to order 1/J2, we find the same string spectrum from the decoupling limit (1.2) of

strings on AdS5 × S5 as we found on the gauge theory side.

Note that the matching of the spectrum here is made in a λ → 0 limit with J large

but finite. Therefore, in this sense we have that the string sigma-model action I[h, x, S]

in (3.25) is finite after the decoupling limit.

We can thus conclude that our matching of the string theory sigma-model action (3.29)

to the leading order part of the gauge theory sigma-model action (2.17) enables us to match

the first-quantized string spectrum to the spectrum (2.11) found on the gauge theory side.

– 18 –



J
H
E
P
0
2
(
2
0
0
9
)
0
2
7

We emphasize that this matching of spectra is highly non-trivial in that on the string

side we are taking a R2/α′ → 0 limit, which ordinarily would mean that the quantum

corrections would become large. Instead, in the limit (1.2) we have shown in section 3.2

that we can keep the quantum corrections under control by having J large. A crucial part

of this, shown in section 3.1, is that even though the string sigma-model action I[h, x, S]

is proportional to R2/α′ there is another part of the action multiplying this that diverges

for R2/α′ → 0 such that we end up with a finite action I[h, x, S] in the (1.2) limit.

Another related reason that the matching works is that on the gauge theory side we

are able to take a strong coupling limit even though λ → 0. This is due to the fact that

the effective coupling in the regime (1.1) is not λ but rather λ/(E − J). Therefore by

having λ/(E − J) ≫ 1 while λ→ 0 we are accessing a strong coupling regime of the gauge

theory side, even though the ’t Hooft coupling λ is small. We discuss how to see that

λ/(E − J) ≫ 1 is a strong-coupling regime in section 7 and in the conclusion in section 8.

Semi-classical string states. As already anticipated in the end of section 3.1, we can

match the leading order contribution to the energy of a semi-classical string state in the

decoupling limit (1.2) of type IIB string theory on AdS5 × S5 (provided of course the

semi-classical string state survives the limit (1.2)) to the leading order energy of the cor-

responding state on the gauge theory side. This follows from the matching of the string

theory and gauge theory sigma-model actions (3.29) and (2.19) to leading order for J → ∞.

That quantum corrections cannot alter this result is due to the fact that I[h, x, S] is of

order J for a semi-classical string state.

Again, the matching of the classical energy of a string state to the energy of a gauge

theory state is rather non-trivial since we are considering a R2/α′ → 0 limit in (1.2). Thus

the lesson here is that we can have a large string sigma-model action I[h, x, S] even though

λ ≪ 1. That this is possible follows from the classical limit in section 3.1 where we saw

that even though R2/α′ → 0 we still end up with a finite action.

As a simple example of a semi-classical state we can consider the rigid circular string

solution [19]

θ = 0 , ϕ = 2mσ (3.31)

This corresponds to having φ1 = −φ2 = mσ and ψ = π/4. The classical energy of this

state is H̃ = Jm2/2.

Note that our results for the matching of the actions on the string side (3.29) and

the gauge theory side (2.19) also means that one can match 1/J corrections to the leading

classical result for the energy. This provides an explanation to the many spectacular results

for the matching of energies for semi-classical states [19 – 21].

4. Connection to semi-classical string regime

In section 3 we have shown that we can match the leading spectra of gauge and string

theory by taking the limit (1.2) on both sides of the AdS/CFT correspondence. In this

section we argue that our results explains the matching between weakly-coupled gauge

theory and string theory in the semi-classical regime at first order in λ′ = λ/J2.
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The argument is rather simple. In section 2 and 3 we have examined gauge theory and

string theory in the regime

λ≪ 1 , J ≫ 1 (4.1)

In this regime we can expand the energy/scaling dimension in λ and 1/J on both the

gauge theory and the string theory side. Expanding in λ we can write the gauge theory

energy/scaling dimension as

Egt − J = λA1 + λ2A2 + O(λ3) (4.2)

and the energy of string states as

Estr − J = λB1 + λ2B2 + O(λ3) (4.3)

At each order in λ we can then expand in 1/J . At first order in λ we have

A1 =
a1

J2
+
a2

J3
+ O(J−4) , B1 =

b1
J2

+
b2
J3

+ O(J−4) (4.4)

Validity of the AdS/CFT correspondence in (4.1) means that Egt = Estr. Indeed, we have

shown in section 3 that a1 = b1 and a2 = b2 in the SU(2) sector. This result is thus a

non-trivial confirmation of the AdS/CFT correspondence and it relied on the result (3.29)

which shows that quantum corrections to the classical sigma-model only enters at order

1/J2 as compared to the leading term.

Consider instead the regime

1 ≪ λ≪ J2 (4.5)

This is a semi-classical regime for type IIB string theory since λ ≫ 1. In this regime we

can expand the energy of string states in λ′ = λ/J2 11

Estr − J = λ′C1 + λ′2C2 + O(λ′
5/2

) (4.6)

At each order in λ′ we can then expand in powers of 1/J

C1 = c1 +
c2
J

+ O(J−2) (4.7)

Since the two regimes (4.1) and (4.5) do not overlap there is a priori no reason why

the energies should agree in these two regimes. Indeed a mismatch can be resolved by

introducing an interpolating function of λ between the two.12 However, it has been found

in numerous computations, both for quantum string states and semi-classical string states,

that a1 = c1 and a2 = c2 [9, 16, 40, 17 – 21]. This agreement begs for an explanation.

We can argue for a1 = c1 and a2 = c2 as follows. In the regime (4.1) we can infer

from (3.29) that the computation of b1 and b2 only involves the classical Landau-Lifshitz

11Note that in this semi-classical regime there are also non-analytical terms in λ contributing [37, 38].

These terms comes from quantum corrections to the classical string result and can be seen as 1/
√

λ correc-

tions to (4.6) and are therefore small when λ is large.
12In the study of integrability of the AdS/CFT correspondence this has been achieved by the introduction

of a phase-factor which changes as one goes from λ ≪ 1 to λ ≫ 1 [25, 39, 26].
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sigma-model. In the semi-classical regime (4.5) we have the classical sigma-model limit

for λ ≫ 1. Therefore, to leading order we can compute the energy of string states from

the classical Landau-Lifshitz sigma-model. This is in particular true for the c1 and c2
coefficients which are not affected by quantum corrections. Therefore, it follows that b1 = c1
and b2 = c2 since these coefficients are computed from the classical Landau-Lifshitz sigma-

model in both regimes. This agreement holds both for semi-classical string states, with

a large number of excitations, as well as for quantum string states. Since a1 = b1 and

a2 = b2 as consequence of our results in section 3, we see that it follows from our results

that a1 = c1 and a2 = c2 in the SU(2) sector. Using our argument of section 3 we have thus

bridged the gap between the two non-overlapping regimes (4.1) and (4.5) by connecting

the two regimes on the string theory side. We can therefore conclude that the agreement

of weakly coupled gauge theory and semi-classical string theory at one-loop up to 1/J2

corrections (i.e. a1 = c1 and a2 = c2) is not a coincidence.

It has furthermore been found that J4A2 = C2 for the leading and first order correction

in 1/J [16 – 18]. It would be very interesting if one could extend our arguments to get an

understanding of this agreement as well.

5. The decoupling limit as a non-relativistic limit

In this section we show that the decoupling limit (1.2) corresponds to a non-relativistic

limit of type IIB string theory on AdS5 × S5. We show this in full detail for type IIB

string theory on the maximally supersymmetric pp-wave in section 5.1. In section 5.2 we

extend the analysis to the AdS5×S5 background and we comment on the relation to other

non-relativistic limits in string and M-theory.

5.1 Non-relativistic limit of string theory on pp-wave

Penrose limit for flat-direction pp-wave. We review here how to take the Penrose

limit of [27], giving the maximally supersymmetric pp-wave background of [28] in a coordi-

nate system with a flat direction [29, 27]. The AdS5×S5 background is (3.1) and (3.2). For

simplicity, we ignore the five-form field strength and the fermionic fields in the following.

Using the variables (3.6) along with

t′ = t , χ = φ+ − t (5.1)

and using (3.26), we get the following metric for AdS5 × S5

ds2 = R2 cos2 ζ

[

2dt′dχ+ sin θdϕdt′ +
1

4
(dθ2 + cos2 θdϕ2) +

(

dχ+
1

2
sin θdϕ

)2
]

−R2(sinh2 ρ+ sin2 ζ)(dt′)2 +R2
[

dρ2 + sinh2 ρ(dΩ′
3)

2 + dζ2 + sin2 ζdα2
]

(5.2)

Here E − J = i∂t′ , J = −i∂χ and Sz = −i∂ϕ. Define now the coordinates γ, x, y, r and r̃

by

γ = Jχ , x =
√
Jϕ , y =

√
Jθ , r =

√
Jρ , r̃ =

√
Jζ (5.3)
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Then the Penrose limit is

J → ∞ , λ′ ≡ λ

J2
fixed , α′ fixed , t′, γ, x, y, r, r̃, α, Ω′

3 fixed (5.4)

Taking the Penrose limit gives the metric

ds2

α′
√
λ′

= 2dt′dγ +
1

4
(dx2 + dy2) + ydxdt′ +

6
∑

i=1

dz2
i −

6
∑

i=1

z2
i (dt′)2 (5.5)

Here the coordinates z1, . . . , z4 are defined by r2 =
∑4

i=1 z
2
i and dr2 +r2(dΩ′

3)
2 =

∑4
i=1 dz

2
i

and z5, z6 are defined by z5 + iz6 = r̃eiα. We see that this is the pp-wave background

considered in [29, 27]. Choosing the gauge

t′ = cτ , hαβ = ηαβ (5.6)

we obtain the gauge fixed Lagrangian

Lgf =
c

2
y∂τx+

(∂τx)
2 + (∂τy)

2

8
− x′2 + y′2

8
+

1

2

6
∑

i=1

[

(∂τzi)
2 − z′2i − c2z2

i

]

(5.7)

along with the action

I =

√
λ′

2π

∫

dτ

∫ 2π

0
dσLgf (5.8)

From the term c∂τγ in the full Lagrangian, the constant c can be fixed to be

c =
1√
λ′

(5.9)

The Hamiltonian is

Hlc =
λ′

2π

∫ 2π

0
dσ

{

(∂τx)
2 + (∂τy)

2

8
+
x′2 + y′2

8
+

1

2

6
∑

i=1

[

(∂τzi)
2 + z′2i + c2z2

i

]

}

(5.10)

Defining z(τ, σ) = x(τ, σ)+ iy(τ, σ), we can write the mode expansions of the bosonic fields

as

z(τ, σ) = 2
√
c eicτ

∑

n∈Z

1√
ωn

[

ane
−i(ωnτ−nσ) − ã†ne

i(ωnτ−nσ)
]

(5.11)

zi(τ, σ) = i

√
c√
2

∑

n∈Z

1√
ωn

[

ai
ne

−i(ωnτ−nσ) − (ai
n)†ei(ωnτ−nσ)

]

(5.12)

where we used ωn =
√
n2 + c2. The canonical commutation relations [x(τ, σ), px(τ, σ′)] =

iδ(σ−σ′), [y(τ, σ), py(τ, σ
′)] = iδ(σ−σ′) and [zi(τ, σ), pj(τ, σ

′)] = iδijδ(σ−σ′) follows from

[am, a
†
n] = δmn , [ãm, ã

†
n] = δmn , [ai

m, (a
j
n)†] = δmnδij (5.13)

Employing (5.13) we obtain the bosonic spectrum

cHlc =
∑

n 6=0

(ωn − c)Mn +
∑

n∈Z

(ωn + c)Nn +
6

∑

i=1

∑

n∈Z

ωnN
i
n (5.14)
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with the number operators Mn = a†nan, Nn = ã†nãn and N i
n = (ai

n)†ai
n, and with the

level-matching condition

∑

n 6=0

nMn +
∑

n∈Z

nNn +
6

∑

i=1

∑

n∈Z

nN i
n = 0 (5.15)

Decoupling limit as non-relativistic limit. We now consider the decoupling

limit (1.2) and show explicitly that it is a non-relativistic limit.

As in [6] we can take the limit directly of the spectrum (5.14). We first notice that

the rescaled energy defined in (2.10) is H̃ = c2Hlc. Since c → ∞ we see that the modes

with non-zero Nn and N i
n become infinitely heavy, whereas the modes with Mn gives the

following spectrum

H̃ =
1

2

∑

n 6=0

n2Mn ,
∑

n 6=0

nMn = 0 (5.16)

This match the leading part of (2.11), in accordance with sections 3 and 4 [6].

We see that the decoupling of the modes N i
n corresponds to the decoupling of the six

modes transverse to R × S3 as discussed in section 3.2. Instead for the Nn modes, we can

interpret their decoupling as a consequence of the non-relativistic nature of the limit (1.2),

as we now shall discuss.

The first hint that the limit (1.2) is non-relativistic comes from considering the disper-

sion relation for the Mn modes. Notice that a single mode with Mn = 1 has

E − J =
√

1 + λ′n2 − 1 (5.17)

We can interpret this as a relativistic dispersion relation E =
√

m2 + p2 where the energy

is E = (E − J + 1)/
√
λ′, the rest-mass is m = 1/λ′ and the momentum is p = n. The

non-relativistic limit is then that p/m → 0 giving a Galilean dispersion relation E −m =

p2/(2m). We see that this precisely is realized by the limit (1.2).

Consider now the mode expansion (5.11) of the field z(τ, σ) = x(τ, σ)+iy(τ, σ). Before

taking the limit we see that we have two sets of modes an∈Z and ãn∈Z. This is in accordance

with having two spatial directions. Considering the limit (1.2) of (5.11), we see that

z(τ, σ) = 2
∑

n∈Z

√

c

ωn

[

ane
−i(ωn−c)τ+inσ − ã†ne

i(ωn+c)τ−inσ
]

≃ 2
∑

n∈Z

ane
−i n2

2
t̃+inσ − 2

∑

n∈Z

ã†ne
2ic2 t̃−inσ (5.18)

where we used the rescaled time t̃ = λ′t′ =
√
λ′τ , as introduced in section 3.1. The time t̃

measures the appropriate energy scale H̃ for the limit (1.2). The first term in (5.18) clearly

becomes the mode expansion for the surviving modes after the limit, corresponding to the

mode expansion (2.22) for the free limit of the sigma-model describing the Heisenberg spin

chain, see section 2.2. The second term in (5.18) decouples since c2 → ∞. Therefore, after

the limit only the an∈Z modes are left. That half of the modes vanishes when going from a

relativistic to a Galilean dispersion relation has a clear physical interpretation. This being
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that before the limit any particle mode has an anti-particle mode propagating backwards

in time, as is the case in a relativistic field theory. After the limit we instead have Galilean

symmetry, now with the anti-particle modes ãn∈Z decoupled. I.e. the field z(t̃, σ) only

contains lowering operators after the limit and has thus no anti-particle part.

We can furthermore see that the limit (1.2) is non-relativistic by considering the veloc-

ities. We have that τ = ct̃ and hence the velocities ∂τx, ∂τy and ∂zi all go to zero like 1/c

as c→ ∞. That the velocities go to zero is obviously a clear signature of a non-relativistic

limit. Taking the c→ ∞ limit of the Lagrangian (5.7) we get

Lgf =
1

2
y∂t̃x− x′2 + y′2

8
− 1

2

6
∑

i=1

[

z′2i + c2z2
i

]

(5.19)

We see that only x(t̃, σ) is dynamical after the limit. The six transverse directions zi(τ, σ)

are non-dynamical and decoupled, and the potential forces the string to be located at zi = 0

which is also what we found in section 3.2. Taking the limit (1.2) on the level of the action,

we thus get the action

I =
1

2π

∫

dt̃

∫ 4π

0
dσ

[

y∂t̃x− x′2 + y′2

4

]

(5.20)

This precisely correspond to the action (2.21) obtained in the free limit of the sigma-model

found on the gauge theory side. In section 6 we consider further the two ways of obtaining

the action (5.20). As discussed in section 2.2 the action (5.20) is a theory with Galilean

symmetry and spectrum (5.16).

Consider the momenta

px =
1

4π
y +

1

8πc
∂τx , py =

1

8πc
∂τy (5.21)

Since ∂τx and ∂τy both go to zero as 1/c when c → ∞, we have that px → y/(4π) and

py → 0 in the limit (1.2). From the canonical commutator [x(τ, σ), px(τ, σ′)] = iδ(σ − σ′)

we see now that

[x(τ, σ), y(τ, σ′)] = 4πiδ(σ − σ′) (5.22)

Thus, x and y become non-commutative in the limit (1.2). Note here that before the limit

we have that [x(τ, σ), y(τ, σ′)] = 0. However, the origin of this non-commutativity is the

decoupling of the ãn∈Z modes.

The non-commutativity (5.22) connects also to another aspect of the non-relativistic

nature of the limit (1.2). As one can see for example from (5.16) we have after the limit a

one-dimensional Galilean theory, instead of the two-dimensional relativistic theory before

the limit. Thus, we effectively go from having two spatial directions x and y, to having only

one spatial direction x in the limit (1.2). Since px → y/(4π) in the limit we see that the

two spatial directions become the directions in a two-dimensional phase space for a single

spatial direction. In this way we accomplish reducing the dimension from two to one. This

ties up with the non-commutativity of x and y in (5.22) since now y is the momentum

conjugate of x.

We discuss the relation to the literature on non-relativistic limits and string theories

with Galilean symmetries below in section 5.2.
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5.2 General considerations

In section 5.1 we have shown explicitly that the limit (1.2) of type IIB string theory on the

maximally supersymmetric pp-wave background (5.5) is a non-relativistic limit. We now

explain that the limit (1.2) of type IIB string theory on AdS5 × S5 also corresponds to a

non-relativistic limit. To see this consider the limit in section 3.1. From (3.12) and (3.18)

we see that for the fields ϕ(τ, σ) and θ(τ, σ) the velocities ∂τϕ and ∂τθ go to zero since

κ → 0 in the limit (1.2). This is obviously a clear sign of taking a non-relativistic limit

and is in close resemblance with the limit of the pp-wave considered in section 5.1. If we

consider the momenta conjugate to ϕ and θ we have

pϕ =
J

4π
sin θ +

√
λ

8π
∂τϕ+

√
λ

4π
∂τχ , pθ =

√
λ

8π
∂τθ (5.23)

We get from this that pϕ → J sin θ/(4π) and pθ → 0 in the limit (1.2). Using the same

reasoning as in section 5.1 we see that we go from a theory with two spatial directions ϕ

and θ to a one-dimensional theory in which ϕ and θ instead parameterizes the phase space.

This is in accordance with the Landau-Lifshitz action (3.23). Moreover, the above limit of

the momenta pϕ and pθ shows that ϕ and θ do not commute after the limit, in accordance

with the analysis of section 2.2. In conclusion, the limit (1.2) is a non-relativistic limit of

type IIB string theory on AdS5 × S5.

It is interesting to compare our non-relativistic limit of type IIB string theory on

AdS5×S5 to other non-relativistic limits of string and M-theory which have been considered

previously. For a D-brane with a near-critical electric field it has been found that the open

strings on the D-brane result in an open string theory with Galilean dynamics and space-

time non-commutativity, while the closed string sector decouples [41 – 45] and this has

furthermore been generalized to other branes as well [46 – 48]. Building on these limits,

it was found in [49 – 51] that one can find non-relativistic closed string theories (NRCS’s)

with Galilean dynamics by taking a near-critical limit of string theory in the background

of a near-critical field in which one of the directions compactified. A similar NRCS limit

was furthermore found for type IIB string theory on AdS5 × S5 [52].

The features common between the NRCS limits and our limit (1.2) are that they are

low energy limits, which in our case corresponds to sending E − J → 0, they are non-

relativistic limits, i.e. limits of slow velocities and with Galilean dynamics, and they have

modes that become infinitely heavy in the limit and therefore decouple. It seems on the

other hand that there is not any direct relation or duality between our limit (1.2) and the

NRCS limits since we find a space-space non-commutative target space and since in the

NRCS theories a compact direction is needed in order to take the limits (the surviving

closed strings all have non-zero winding). Moreover, we find a truncation of the degrees

of freedom of the theory in that the dimension of the target space is reduced, in contrast

with the NRCS limits in which the dimension of the target space is preserved.

6. Decoupling limit versus Penrose limit

We consider in this section briefly the interplay between two different kinds of limits that

one can take of type IIB string theory on AdS5 × S5. The first kind is the Penrose limit.
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Decoupled theory

SUSY pp-wave Galilean theory

Figure 1: Overview of the limits. The limits going downwards corresponds to the Penrose limit

and its manifestation for the decoupled theory. The limits going from left to right corresponds to the

decoupling limit (1.2) and its manifestation for the maximally supersymmetric pp-wave background.

This is purely geometrical limit in which the number of degrees of freedom is the same as

before the limit, but the background of the strings changes from AdS5×S5 to the maximally

supersymmetric pp-wave background of [28]. The second kind of limit is the decoupling

limit (1.2), see also [7] for other limits of this kind. This kind of limit is not geometrical but

is taken directly of the string theory, as we did in section 3 for the AdS5×S5 sigma-model.

In this kind of limit we zoom in on a particular regime of the theory in which some of

the degrees of freedom decouple from the spectrum due to the rescaling of the energy and

moreover the interactions between the surviving modes simplify.

In figure 1 we have illustrated the four limits that we are considering. The top limit

going from left to right is the decoupling limit (1.2) that we considered in section 3. The

left limit going downwards is the Penrose limit of AdS5 × S5 [27] giving the maximally

supersymmetric pp-wave background of [28]. We review briefly this limit in section 5.1.

Note that the relevant Penrose limit is the one of [27] rather than the one of [53, 54]. We

considered in section 5.1 the limit on figure 1 on the bottom going from left to right. This

limit is the manifestation of the decoupling limit for the maximally supersymmetric pp-wave

background and was found in [6] (see also [8]). Finally, the right limit going downwards is

the manifestation of the pp-wave limit for the decoupled theory. This limit is discussed in

section 2.2 where it is shown that we end up with a one-dimensional non-relativistic theory

with a Galilean symmetry, hence the name “Galilean theory”.

As depicted in figure 1 one obtains the same “Galilean theory” irrespective of whether

one first takes the Penrose limit and then the decoupling limit or vice versa. Indeed this

follows from the arguments of sections 3 and 4. That the two limits in this sense commute,

in that you end up with the same end point, is non-trivial since if we first take the pp-wave

limit then λ → ∞ as part of that limit, whereas if we take the other way around the

diagram in figure 1 then we always keep λ small.
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7. Hagedorn temperature as interpolating quantity

The limit (1.2) was originally conceived as a limit of the Grand Canonical partition function

of SU(N) N = 4 SYM on R × S3. For our purposes we can write this partition function

as Z(T,Ω), where T is the temperature and Ω is the chemical potential associated to

J = J1 + J2. The limit in the Grand Canonical ensemble takes the form [5, 6]

Ω → 1 , T̃ ≡ T

1 − Ω
fixed , λ̃ ≡ λ

1 − Ω
fixed , N fixed (7.1)

The resulting partition function is [5, 6]

Z(β̃) = Tr
[

e−β̃(D0+λ̃D2)
]

(7.2)

where the trace is only over the SU(2) sector and β̃ = 1/T̃ . In the planar limit N = ∞
one finds [5, 6]

logZ(β̃) =

∞
∑

n=1

∑

J=1

1

n
e−β̃nLZ

(XXX)
J (nβ̃) (7.3)

where Z
(XXX)
J (β̃) is the partition function for the ferromagnetic Heisenberg spin chain of

length J with Hamiltonian λ̃D2. Thus, as in the microcanical ensemble, planar N = 4

SYM on R×S3 in the limit (7.1) is given exactly by the Heisenberg spin chain. Using this

it was found in [6] that the Hagedorn temperature is determined from the thermodynamic

limit of the free-energy per site of the ferromagnetic Heisenberg spin chain

f(t) = −t lim
J→∞

1

J
log

[

TrJ

(

e−t−1D2

)]

(7.4)

from the formula

f
(

(β̃H λ̃)−1
)

= −λ̃−1 (7.5)

Using (7.5) one can find the Hagedorn temperature T̃H(λ̃) as function of λ̃. This was done

in [6] both for λ̃ ≪ 1 and λ̃ ≫ 1. More generally, we can infer from (7.5) that we can

interpolate the Hagedorn temperature T̃H from λ̃≪ 1 to λ̃≫ 1.

For λ̃ ≪ 1 we can connect to the loop corrections in weakly coupled N = 4 SYM.

More specifically, for λ̃ ≪ 1 each term of power λ̃k in T̃H origins from a k-loop correction

in weakly coupled N = 4 SYM [6]. Therefore, if we instead consider λ̃ ≫ 1 we can infer

that this is a strong-coupling regime of N = 4 SYM, even though we have λ≪ 1. Having

λ̃ ≫ 1 is equivalent to having λ/(E − J) ≫ 1 in the microcanonical ensemble.13 Thus we

can conclude that λ/(E − J) ≫ 1 corresponds to a strong coupling regime of N = 4 SYM,

even though λ≪ 1.

For λ̃ ≫ 1 it was found that T̃H = (2π)1/3ζ(3/2)−2/3λ̃1/3 [6]. This result is obtained

from the spectrum (2.26). Since we have shown in this paper that this spectrum can be

13To see this in detail, one uses that 1−Ω sets the energy scale in the limit (7.1), i.e. β(E − J) = β̃(E −
J)/(1−Ω), so states which contribute to the partition function has E−J . 1−Ω. Hence λ̃ = λ/(1−Ω) ≫ 1

is translated in the microcanonical ensemble to λ/(E − J) ≫ 1.
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found both from the gauge theory side as well as the string theory side of AdS/CFT in

the limit (1.2) we can match this Hagedorn temperature to the Hagedorn temperature of

type IIB string theory on AdS5 × S5. This was done in [6]. However, here we justify the

steps of [6] in which the Hagedorn temperature was found on the string theory side by

first taking the Penrose limit (5.4) and subsequently taking the limit (1.2). Indeed, we

have shown in sections 3–6 (see in particular the commuting diagram in figure 1, section 6)

that one obtains the same spectrum (2.26) by first taking the limit (1.2) and subsequently

considering J → ∞. Therefore, we can conclude that the Hagedorn temperature constitutes

the first example of a quantity, not protected by supersymmetry, which we can interpolate

fully from weak to strong coupling in AdS/CFT.

8. Conclusions

The basic idea of this paper is that we can compare gauge theory and string theory quan-

titatively in the regime (1.1) of the AdS/CFT correspondence. The special thing about

the regime (1.1) is that the ’t Hooft coupling is small which means we can compute the

spectrum of states exactly using weakly coupled N = 4 SYM. Ordinarily, this would mean

that we are deep in a quantum string regime on the string theory side, since the length

scale of the AdS5 × S5 geometry is much smaller than the string length, but we show in

this paper that we can find a semi-classical string theory regime as part of the regime (1.1).

This is related to the fact that while λ≪ 1 we have that λ/(E − J) ≫ 1 which effectively

means that we are in a strong-coupling regime of N = 4 SYM.

That λ/(E−J) ≫ 1 is a strong-coupling regime of N = 4 SYM is tied to the fact that

we can see strings with continuous world-sheets in the regime (1.1). In particular, we find in

this paper that there are semi-classical strings with λ/(E−J) ∼ J and that single quantum

strings which are weakly interacting on the world-sheet appear for λ/(E − J) ∼ J2. As we

explain in this paper, it is the ability to match the energies for such strings that makes a

quantitative match of the spectra of planar N = 4 SYM on R × S3 and type IIB string

theory on AdS5 × S5 in the regime (1.1) possible.

We explore the regime (1.1) by taking the decoupling limit (1.2). We show that this

limit can be seen as a non-relativistic of strings on AdS5 ×S5, and it is conjectured to give

a consistent truncation of both the gauge theory and string theory sides of the AdS/CFT

correspondence. For planar N = 4 SYM and type IIB string theory with gs = 0 we show

that one can match the leading terms in a sigma-model action in the decoupling limit (1.2)

and for large J . This relies on our identification of a new semi-classical regime for the

string side. Employing this, we match the spectra up to 1/J2 corrections. We explain that

this result shows why it has been found in several ways that the one-loop contribution to

the spectrum matches the string theory spectrum up to 1/J2 corrections.

The results of this paper give a better understanding of the matching of Hagedorn

temperature in [6]. We conclude that the Hagedorn temperature constitutes the first

example of a quantity, not protected by supersymmetry, which we can interpolate fully

from weak to strong coupling in AdS/CFT.
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Given that we have managed to identify a regime of the AdS/CFT correspondence in

which we can quantitatively match gauge theory and string theory, it is interesting to ask

what future applications this can have. A very interesting direction taken in [36]14 is to

match the spectrum of type IIB strings on AdS5×S5 to the spectrum obtained on the gauge

theory side at order 1/J2 in the limit (1.2). The matching at order 1/J2 would be highly

interesting in that it should involve a non-trivial contribution coming from integrating out

the modes that decouple in the limit (1.2), giving rise to a higher-derivative term in the

effective sigma-model description of the strings.

Another direction that one could pursue is to compute λ corrections on the string

theory side. This seems challenging on the string theory side since one in principle should

integrate out the heavy decoupled modes order by order in λ and then do quantum me-

chanical perturbation theory in λ. However, if one succeeds it could provide an alternative

and more direct path to resolving the famous three-loop discrepancy [17, 18, 55].

Another very interesting avenue to explore is to move away from the planar limit and

gs = 0. One direction could be to take a new look at 1/N corrections.15 It is conceivable

that the fact that string theory simplifies in the limit (1.2) could help in going further in

this direction. Another interesting direction would be to explore the regime of finite string

coupling where one should see black holes.16 Obviously, if one could use the regime (1.1)

and the decoupling limit (1.2) to quantitatively match gauge theory with black holes on

the string theory side, it would be a result of tremendous importance.

Finally, it is interesting to generalize our results to gauge/string dualities with less

supersymmetry. We note in particular the papers [68 – 71] in which the thermodynamics

are considered for gauge/gravity correspondences with less than maximal supersymmetry.

We remark furthermore that we found a decoupling limit similar to (1.2) for pure Yang-

Mills theory in [7].
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